
© Steen Krøyer, 2011 1111////3333 Aarhus School of Engineering

(j)(j)(j)(j)Spin Cheat SheetSpin Cheat SheetSpin Cheat SheetSpin Cheat Sheet
Ver.1Ver.1Ver.1Ver.1

Everything between /* and */ is ignored (C-style
comments).

/* This is a comment */
proctype P()
{
}

Type Values Size (bits)
bit, bool 0, 1 , false, true 1
byte [0, 255] 8
short [-32768, 32767] 16
int [-231, 231-1] 32
unsigned [0, 2n-1] ≤ 32
chan Reference to a channel
pid [0, 255] 8
mtype Symbolic names (max.

255)
8

bool is the same as bit, and true/false is the same as 1/0.

Variable Meaning
_nr_pr Number of running processes
_pid Process ID of current process

proctype P()
{
 printf(“This process has pid = %d\n”,_pid)
}

init {
 run P();
 /* Wait for P to terminate */
 (_nr_pr == 1);
 printf(“Init is now last process running\n”)
}

P
re

c
e
d
e
n
c
e

O
p
e
ra

to
r

A
s
s
o
c
ia

ti
v
it
y

D
e
s
c
ri

p
ti
o
n

14 () left Parenthesis
14 [] left Array indexing
14 . left Field selection
13 ! right Logical negation
13 ~ right Bitwise complementation
13 ++, -- right Increment, decrement
12 *, /, % left Multiply, divide, modulo
11 +, - left Addition, subtraction
10 <<, >> left Left/right bitwise shift
9 <, <=,

>, >=
left Arithmetic relational

operators
8 ==, != left Equality, inequality
7 & left Bitwise AND
6 ^ left Bitwise exclusive OR
5 | left Bitwise inclusive OR
4 && left Logical AND
3 || left Logical OR
2 (-> :) right Conditional expression
1 = right Assignment

/* Preprocessor macro */
#define N 10

/* Enumerated names */
mtype = {red, blue, green};
mtype = {yellow, orange}; /* Merged, note 1 */
mtype light1 = green;
mtype light2 = yellow;

A maximum of 255 symbolic names can be defined.
Note 1: Multiple definitions are merged. There can only be
one set of mtype-names.

Expressions, statements and guards
Expressions are statements. Some statements (such as
assignments, printf) are always executable. Some
statements (logical expressions) are only executable when
they are true and are known as guards.

Sequence
Semicolon ‘;’ is the separator between statements
executed in sequence.

x = 17; /* Always executable */
x + y > 20; /* Guard: blocks until true */
printf(“hi”); /* Not executed until x+y>20 */

Selection - if

if
:: x == 20 -> printf(“large”) /* Note 1 */
:: x == 10 ; printf(“small”)
:: else -> printf(“???”) /* Note 2 */
fi

Note 1: ‘->’ is just syntactic sugar for ‘;’, used to
emphasize the causal relation (if->then).
Note 2: The else guard is only executable when all other
guards are false.

Selection - select
To choose a value non-deterministically an if-statement
can be used:

int x;
if /* x = value between 1..3 */
:: x = 1
:: x = 2
:: x = 3
fi

The select statement has the same effect:

int x;
select(x : 1..3); /* x = value between 1..3 */

Repetition – do
The do-loop repeats until a break or goto statement is used
break out of it.

do
:: x == 20 -> printf(“large”) /* Note 1 */
:: x == 10 ; printf(“small)
:: else -> /* Note 2 */
 break /* Note 3 */
od

Note 1: ‘->’ is just syntactic sugar for ‘;’, used to
emphasize the causal relation (if->then).
Note 2: The else guard is only executable when all other
guards are false.
Note 3: The break statement causes the loop to terminate.

© Steen Krøyer, 2011 2222////3333 Aarhus School of Engineering

Repetition – for

byte i;
for (i : 1..10) {
 /* Body of loop */
}

The bounds can be expressions:

for (i : (a*2)..(n+4)) {
}

Jump – goto

The goto-statement causes control to jump to a label. Goto
can be used instead of break in a loop:

 do
 :: i > n -> goto exitloop
 :: else -> . . .
 od;
exitloop:
 printf(“. . .”);

All work in Spin is done in processes. A process “type”
must be defined before it can run.

proctype p1()
{
 /* Process body */
}

A process type may take arguments.

proctype p2(byte id; byte num)
{
 printf(“id = %d, num = %d”,id,num);
}

To run the processes above, use:

run p1(); /* p1 takes no arguments */
run p2(1,7); /* p2 takes two arguments */

If the declaration is preceded by active, a running instance
of the process is created automatically.

active proctype p3()
{
 . . .
}

Several instances may be created in one go (3 in this
example).

active [3] proctype p4()
{
 . . .
}

If a process called init is defined, it will run automatically. It
can then start other processes as needed.

init {
 atomic { /* Note 1 */
 run p1();
 run p2(2,5);
 run p3();
 }
}

Note 1: By convention run statements are enclosed in
atomic to ensure that all processes have been instantiated
before any of them begins execution.

Use assert- statements at selected points in the code to

verify correct model behaviour/state:

assert(x >= 4 && x <= 10);

Atomic

When statements are enclosed in atomic, they are

executed until completion, without interference from other

processes. The first statement may be a guard.

atomic {
 !ready; /* Atomic sequence will block */
 temp = n + 1; /* until !ready becomes true, */
 n = temp /* but will then run to com- */
} /* pletion w.o. interference. */

d_step
d_step (for deterministic step) can also be used.

d_step {
 !ready;
 temp = n + 1;
 n = temp
}

d_step is more efficient than atomic, but is subject to 3
limitations:

• Except for the first statement (the guard), statements
may not block.

• It is illegal to move in or out of the sequence with
goto or break.

• Non-determinism is always resolved by choosing the
first true alternative (no real non-determinism).

A Spin LTL formula implicitly refers to all computations of
the model. So if a correctness property is specified as an
LTL formula, the property only holds if it is true in all
computations – so Spin only needs to provide a single
counterexample to disprove the property

Operators

Operator Math Spin
not ¬ !

and ∧ &&

or ∨ ||

implies ⇒ ->

equivalent ⇔, ≡≡≡≡ <->

always � []
eventually � <>
until u U

Duality: ¬¬¬¬����p ≡≡≡≡ ����¬¬¬¬ p, ¬¬¬¬����p ≡≡≡≡ ¬¬¬¬����p
If good and bad are atomic propositions such that good is
equivalent to !bad, then we have the following
equivalences:

¬¬¬¬����good ≡≡≡≡ ����¬¬¬¬good ≡≡≡≡ ����¬¬¬¬¬¬¬¬bad ≡≡≡≡ ����bad,
¬¬¬¬����good ≡≡≡≡ ����¬¬¬¬good ≡≡≡≡ ����¬¬¬¬¬¬¬¬bad ≡≡≡≡ ����bad

Safety properties
A counterexample consists of one state where the formula
is false. Choose “Safety” in jSpin drop-down menu.

Always A, [] A, is true in state si if and only if A is true for
all states sj, j ≥ i.

Liveness properties
A counterexample is an infinite computation where the
formula never becomes true. Use “Acceptance” in jSpin
dropdown menu (and tick of “Weak fairness”).

[]A is true for all states, incl. s0

A A A A A A A

s
1
 s

2
 s

3
 s

4
 s

5
 s

6
 s

0

© Steen Krøyer, 2011 3333////3333 Aarhus School of Engineering

Eventually A, <> A, is true in state si if and only if A is true
for some state sj , j ≥ i.

Latching: <>[]A (eventually always)

Indefinitely often: []<>A (always eventually)

Precedence

The [] and <> operators are unary and cannot express

properties relating two points in time, such as “A must

become true before B becomes true”. The binary operator

U (strong until) must be used for such purposes.

A until B, (A) U (B), is true in state si if and only if:

- B is true in some state sk, k ≥ i

- A is true for all states sj, i ≤ j < k

Arrays

int a[5];
a[0] = 1; a[1] = 3; a[2] = 5; a[3] = 7; a[4] = 9;

Type definitions

Compound types are defined with typedef, and are

primarily used for defining the structure of messages to be

sent over channels:

typedef MESSAGE {
 mtype messagetype;
 byte source;
 byte destination;
}

Inline
The inline construct is almost the same as the preprocessor
macro feature, but with a more friendly syntax. The
parameters of the inline sequence (if any) are replaced by
the actual values and the sequence is inserted at the point
of call.

inline swap(a,b) {
 int tmp;
 tmp = a; a = b; b = tmp;
}
proctype p() {
 int j,k;
 j = 2; k = 9;
 swap(j,k);
}

Preprocessor

/* Inclusion of external file */
#include “filename.h”

/* Define simple symbols */
#define N 4
#define mutex (critical <= 1)

/* Define macros */
#define increment(x) (x = x + 1)
#define swap(a,b) \
 int tmp; \
 tmp = a; \
 a = b; \
 b = tmp;

A channel is datatype with 2 operations, send and receive.

Every channel is associated with a specific message type.

At most 255 channels can be created. It is possible to

create an array of channels.

chan reply[2] = [4] of { byte };
chan ch = [capacity] of { typename[,typename] };

Send/receive

channel ! var1[,var2 ...]; /* Send */
channel ? var1[,var2 ...]; /* Receive */

Channel capacity

A channel with capacity 0 is called a rendez-vous channel.
Send and receive operations on a rendez-vous channel
blocks until the peer process is ready, at which point the
send and receive operation is executed synchronously and
atomically.

A channel with a capacity larger than 0 is called a buffered
channel. They behave like a FIFO with a specified capacity.
Send and receive statements are executable if there is
room in the channel, or messages in the channel,
respectively. Otherwise they block until space or a
message becomes available.

Special syntax for send/receive
Defining messages type(s):

mtype {open, close, reset};
chan ch = [1] of {mtype,byte,byte};

The message definition above allows send statements like
this:

ch ! open, 2, 3; /* Send open message */
ch ! close(4,7); /* Send close message */

A receiver might look like this:

proctype Receiver() {
 mtype request;
 byte parm1;
 byte parm2;
 ch ? request,parm1,parm2;
}

Checking contents of a channel
These functions are only allowed for buffered channels.

Predefined function Description
full(channel) True if channel is full.
nfull(channel) True if channel is not full.
empty(channel) True if channel is empty.
nempty(channel) True if channel is not empty.
len(channel) Return number of messages.

These functions must be used - !full and !empty are not
allowed. Warning: do not use else alternatives in if/do that
have channel expressions as guards; instead use the pairs
full/nfull and empty/nempty.

!A !A !A A !A !A !A

s
1
 s

2
 s

3
 s

4
 s

5
 s

6
 s

0

[]A is true for all states, incl.

!A !A A A A A A

s
1
 s

2
 s

3
 s

4
 s

5
 s

6
 s

0

<>[]A is true for all states, incl. s
0

!A !A !A A !A !A !A

s
1
 s

2
 s

3
 s

4
 s

5
 s

6
 s

0

[]<>A is true for all states, incl. s
0

A !B

s
1
 s

2
 s

3
 s

4
 s

5
 s

0

A !B A !B * B * * * *

* = don’t care

